Charge-State Control of Mn$^{2+}$ Spin Relaxation Dynamics in Colloidal $n$-Type Zn$_{1-x}$Mn$_x$O Nanocrystals

Alina M. Schimpf, Jeffrey D. Rinehart, Stefan T. Ochsenbein, and Daniel R. Gamelin*

Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States

Supporting Information

ABSTRACT: Colloidal diluted magnetic semiconductor (DMS) nanocrystals are model systems for studying spin effects in semiconductor nanostructures with relevance to future spin-based information processing technologies. The introduction of excess delocalized carrier charge into such nanocrystals turns on strong dopant–carrier magnetic exchange interactions, with important consequences for the physical properties of these materials. Here, we use pulsed electron paramagnetic resonance (pEPR) spectroscopy to probe the effects of excess conduction band electrons on the spin dynamics of colloidal Mn$^{2+}$-doped ZnO nanocrystals. Mn$^{2+}$ spin–lattice relaxation is strongly accelerated by the addition of even one conduction band electron per Zn$_{1-x}$Mn$_x$O nanocrystal, attributable to the introduction of a new exchange-based Mn$^{2+}$ spin relaxation pathway. A kinetic model is used to describe the enhanced relaxation rates, yielding new insights into the spin dynamics and electronic structures of these materials with potential ramifications for future applications of DMS nanostructures in spin-based technologies.

Diluted magnetic semiconductor (DMS) nanostructures are attractive targets for emerging spintronic and quantum computing applications$^{1–4}$ due to their large carrier–dopant magnetic exchange interactions$^{5–7}$ and the ability to electronically and optically manipulate or read out the magnetic dopant spins.$^{8–9}$ One particular motif that has received broad attention involves the incorporation of Mn$^{2+}$ cations into colloidal semiconductor nanocrystals. Substitutional Mn$^{2+}$ doping of colloidal semiconductor nanocrystals has been demonstrated, with compositions ranging from many hundreds of Mn$^{2+}$ cations per nanocrystal down to a single Mn$^{2+}$ per nanocrystal.$^{10–12}$ An interesting feature of colloidal nanocrystals is that many such systems can be photochemically reduced to introduce a well-defined number of stable, delocalized band-like electrons.$^{11–13}$ In Mn$^{2+}$-doped nanocrystals, this chemistry turns on new exchange interactions between the delocalized electrons and the $S = 5/2$ Mn$^{2+}$ dopant ions, allowing the impact of delocalized carriers on nanocrystal physical properties to be examined systematically.$^{14}$

Previous studies have demonstrated that Mn$^{2+}$–Mn$^{2+}$ exchange interactions and spin polarizations can be effectively manipulated in colloidal nanocrystals via the introduction and removal of excess electrons$^{14}$ or excitons.$^{15}$ Less is known, however, about the effects of excess free carriers on the dynamics of dopant spins in colloidal DMS nanocrystals. Such dynamics will eventually govern many device-relevant characteristics, from polarization switching frequencies to the available time scales for coherent operations. Quantitative understanding of the effects of proximate electrons or holes on spin–lattice relaxation and quantum coherence times of magnetic dopants is thus vital to developing technologies based on DMS nanocrystal architectures. Here, we use a combination of nanocrystal photodoping and electron paramagnetic resonance (EPR) spectroscopy to demonstrate charge-tunable spin relaxation dynamics of Mn$^{2+}$ dopants in colloidal ZnO nanocrystals.

Three samples were examined, $d = 3.7$ nm Zn$_{0.9997}$Mn$_{0.003}$O, $d = 3.7$ nm Zn$_{0.996}$Mn$_{0.004}$O, and $d = 7.8$ nm Zn$_{0.995}$Mn$_{0.005}$O nanocrystals, with the focus primarily on the first two. Figure 1a shows the room-temperature continuous wave (CW) EPR spectrum of colloidal $d = 3.7$ nm Zn$_{0.999}$Mn$_{0.003}$O nanocrystals. The rich Mn$^{2+}$ hyperfine structure is similar to that observed in bulk Zn$_{1-x}$Mn$_x$O, indicative of substitutional doping.$^{16}$ Excess delocalized electrons were added to the conduction bands of these Zn$_{1-x}$Mn$_x$O nanocrystals via photochemical reduction (see the Methods section).$^{11–14,17,18}$ These electrons fill the nanocrystal volume and do not localize even at cryogenic temperatures.$^{14,17,19,20}$ The CW EPR spectrum of fully reduced nanocrystals is shown in Figure 1a (blue). Introduction of conduction band electrons leads to a substantial broadening of the Mn$^{2+}$ EPR signal and an increase in its total integrated intensity (Figure 1b).$^{11–14,17}$ The increased resonance intensity has been analyzed in detail previously and was shown to arise from new Mn$^{2+}$–Mn$^{2+}$ magnetic exchange interactions that are activated by the excess conduction band electrons.$^{14}$

The broadening of the Mn$^{2+}$ CW EPR spectrum upon photodoping suggests increased spin–spin and/or spin–lattice relaxation rates. To investigate the effect of conduction band electrons on Mn$^{2+}$ spin relaxation times, pulsed EPR measurements were conducted at 4.5 K. Figure 2a shows electron spin-
echo (ESE) spectra of the as-prepared \(d = 3.7\) nm \(\text{Zn}_{0.9997}\text{Mn}_{0.0003}\text{O}\) nanocrystals (red) and of the same nanocrystals after maximum photochemical reduction (blue). CW EPR spectra are provided in Figure S1 (Supporting Information). A slight broadening of the signal and a decrease in overall intensity is observed upon photodoping. The sharp signal at \(\sim 360\) mT is due to conduction band electrons in undoped \(\text{ZnO}\) nanocrystals that are present in the ensemble at these very low \(\text{Mn}^{2+}\) concentrations. For \(d = 3.7\) nm \(\text{Zn}_{0.9997}\text{Mn}_{0.0003}\text{O}\) nanocrystals, there is an average of 0.33 \(\text{Mn}^{2+}\) per nanocrystal, meaning \(\sim 2/3\) of the nanocrystals contain no \(\text{Mn}^{2+}\).

To quantify spin–lattice relaxation times \(T_1\), the echo intensity was measured as a function of delay time \(\tau\) using an echo-detected inversion recovery sequence \(\pi - \tau - \pi/2 - T_{\text{fixed}} - \pi - T_{\text{fixed}} - \tau - \text{echo}\). These decays are shown in Figure 2b for the same nanocrystals in their as-prepared form and at various levels of photochemical reduction. With added electrons (arrow), faster inversion recovery is observed. For the same reduction levels, the spin–spin relaxation times \(T_2\) were also measured by monitoring the Hahn echo intensity as a function of delay time \(\pi/2 - \tau - \pi - \tau - \text{echo}\). These curves are plotted in Figure 2c. \(T_2\) also becomes shorter with added electrons. With increased photochemical reduction, both the spin–lattice and spin–spin relaxation rates are thus accelerated.

To estimate \(T_1\) and \(T_2\) from these measurements, the spectra in Figure 2b,c were fit to eqs 1a and 1b, respectively. Neither data set follows purely single-exponential decay, but for the purposes of this study, an effective single-exponential time is most useful for quantifying the changes in relaxation dynamics.

\[
I(\tau) = 1 - A_{1} \exp \left( - \frac{\tau}{T_{1}} \right) \tag{1a}
\]

\[
I(2\tau) = A_{2} \exp \left( - \frac{2\tau}{T_{2}} \right) \tag{1b}
\]

The effect of added electrons is most easily visualized by plotting the relaxation times as a function of the number of conduction band electrons per nanocrystal. Figure 3a and b plots \(T_1\) and \(T_2\), respectively, as a function of the average number of electrons per nanocrystal (top axes) and of the average electron density (bottom axes) for the 3.7 nm \(\text{Zn}_{0.9997}\text{Mn}_{0.0003}\text{O}\) nanocrystals. The solid lines are guides to the eye. From these data, the addition of one electron per nanocrystal leads to a rapid decrease of both the spin–lattice and spin–spin relaxation times, causing both \(T_1\) and \(T_2\) to drop to around half of their initial values. The same experiments were performed on \(d = 3.7\) nm \(\text{Zn}_{0.996}\text{Mn}_{0.004}\text{O}\) nanocrystals, and the results are plotted in Figure 3c,d. Again, a rapid decrease in \(T_1\) occurs upon the addition of one electron. A similar trend is not observed for \(T_2\) in this sample, possibly because \(T_2\) is already dominated by \(\text{Mn}^{2+}\)–\(\text{Mn}^{2+}\) interactions at this higher \(\text{Mn}^{2+}\) concentration.

The increased intensity of the \(\text{Mn}^{2+}\) CW EPR spectrum (Figure 1) upon photochemical reduction has been shown to arise from electron-mediated exchange interactions between \(\text{Mn}^{2+}\) dopants.\(^{14}\) Excess electrons allow \(\text{Mn}^{2+}\) ions to overcome antiferromagnetic nearest-neighbor exchange interactions, increasing the CW EPR intensity.\(^{14}\) In contrast with this
intensity increase, the ESE intensity decreases upon addition of electrons (Figure 2a). This decrease is due to fast spin relaxation, leading to reduced intensity at the time of the first data point in the spin-echo measurement. For the reduced nanocrystals, the faster spin relaxation means greater dephasing before the spins are refocused, leading to a smaller echo intensity. Broadening is more pronounced in the CW spectrum than in the ESE spectrum, suggesting that some of this broadening is inhomogeneous and thus can be overcome by employing an echo sequence.

To first order, an isolated Mn$^{2+}$ ion has zero orbital moment in its ground state and thus cannot transfer energy efficiently to the lattice via spin–orbit and orbit–lattice interactions, giving it a relatively long $T_1$. Therefore, the largest contribution to Mn$^{2+}$ spin–lattice relaxation is due to interactions between adjacent Mn$^{2+}$ ions, making $T_1$ highly dependent on Mn$^{2+}$ concentration. This Mn$^{2+}$ concentration dependence is observed in the spin–lattice relaxation times of these Zn$_{1-x}$Mn$\_x$O nanocrystals; $T_1$ is shorter at higher Mn$^{2+}$ concentrations (Figure 3a,c). A similarly strong concentration dependence is also observed for $T_2$ (Figure 3b,d). At relatively low Mn$^{2+}$ concentrations, such as the ones in this study, spin–spin interactions are dominated by the magnetic dipole–dipole interaction. This mechanism is inversely dependent on interdipole distance, consistent with smaller $T_2$ values for higher Mn$^{2+}$ concentrations. A strong dependence of $T_1$ and $T_2$ on Mn$^{2+}$ concentration has been observed in a variety of bulk Mn$^{2+}$-doped II–VI semiconductors.

Spin–orbit coupling is stronger for the conduction band electron than for Mn$^{2+}$. Energy transfer between conduction band electron spins and the lattice is therefore more efficient, and the electron’s spin–lattice relaxation is much faster. In the $n$-type Zn$_{1-x}$Mn$_x$O nanocrystals, these electron spins are also coupled to Mn$^{2+}$ spins, which opens alternative channels for Mn$^{2+}$ spin–lattice relaxation via exchange scattering. Such effects have been observed in (Cd,Mn)Te and (Zn,Mn)Se quantum wells, where Mn$^{2+}$ spin–lattice relaxation is controlled by excess electrons or holes. This new relaxation pathway is depicted in Scheme 1 (left).

Mn$^{2+}$ spin relaxation via electron spin–lattice relaxation relies on efficient exchange scattering. This interaction must conserve energy as well as spin. The Zeeman splitting of the conduction band electron spin ($\Delta E_e = g_e\mu_B H$, where $g_e$ is the electron $g$ value, $\mu_B$ is the Bohr magneton, and $H$ is the applied magnetic field) is slightly smaller than that of the Mn$^{2+}$ spins ($\Delta E_{Mn} = g_{Mn}\mu_B H$), owing to its smaller $g$ value ($g_e \approx 1.96$ and $g_{Mn} \approx 2.00$). The similar Zeeman splittings of the two subsystems and the exchange interactions between them enable
very efficient energy transfer even at low temperatures. Fast electron spin–lattice relaxation in conjunction with strong electron–Mn$^{2+}$ exchange thus accelerates the Mn$^{2+}$ spin relaxation.

Scheme 1(right) illustrates the aforementioned process kinetically. Here, $k_{\text{exch}} = 1/T_{\text{exch}}$ describes the Mn$^{2+}$ exchange scattering, which is generally very fast $(10^{-12}–10^{-11} \text{s})^{27–29}$ and allows the Mn$^{2+}$ excited spin state $(\langle \text{Mn}^{2+}_e, e_{\text{CB}} \rangle)$ and the electron excited spin state $(\langle \text{Mn}^{2+}, e_{\text{CB}}^*(e) \rangle)$ to reach thermal equilibrium. The ground state can then be recovered via (i) direct coupling of Mn$^{2+}$ spins with lattice phonons $(k_{\text{SLR,Mn}} = 1/T_{\text{SLR,Mn}}^i)$ as in the absence of excess electrons or (ii) coupling of electron spins with lattice phonons $(k_{\text{SLR,e}} = 1/T_{\text{SLR,e}}^i)$. In this kinetic model, recovery of the ground-state population in this simple model are displayed in Figure 4. To illustrate the role of electron density, parallel measurements were performed on larger $(d = 7.8 \text{ nm})$ Zn$_{0.997}$Mn$_{0.003}$O nanocrystals. These data are summarized in Figure 5, which plots normalized $T_1$ times as a function of electron density for each sample of Zn$_{1-x}$Mn$_x$O nanocrystals. For the larger nanocrystals, much smaller maximum electron densities were pairing interactions in multiply reduced nanocrystals yield lower or intermediate-spin configurations with spin densities that do not scale in simple proportion to the number of electrons. Pairing of conduction band electron spins is not accounted for in the model, which implicitly assumes noninteracting electrons. In bulk DMSs, this is equivalent to saying that only electrons at or near the Fermi level can participate in Mn$^{2+}$ spin flips because deeper electrons will not gain sufficient energy from Mn$^{2+}$ to reach unoccupied final states, and the number of possible electron spin flips (and hence also the electron-mediated spin–lattice relaxation rate) plateaus when the Fermi level is raised sufficiently. This reasoning has been used to explain a similar dependence of Mn$^{2+}$ spin–lattice relaxation times on free-electron concentrations in Zn$_{0.996}$Mn$_{0.004}$Se/Zn$_{0.94}$Be$_{0.06}$Se quantum wells. Indeed, accounting for spin-pairing effects explicitly under an assumption of atom-like filling of conduction band S, P, and D levels causes the model to predict larger values of $T_1$ observed at large $\langle n \rangle$ (Figure S3, Supporting Information). Further refinement of the model to better reproduce the data would require assumptions that are not warranted by the data; therefore, only results from the simplest model are displayed in Figure 4.

Figure 4 compares experimental $T_1$ values with those calculated from eq 2 using $T_{1\text{Mn}} = T_{1\text{as-prepared}}$ and $T_{1\text{e}} = 10 \mu s$ (Figure S2, Supporting Information). For simplicity, the same $T_{1\text{e}}$ was used for all nanocrystal reduction levels (see below). This simple model successfully reproduces the main qualitative experimental trends in Figure 4 well, and its quantitative inaccuracies are revealing. Specifically, the experimental data reach a minimum $T_{1\text{observed}}$ value at an average of approximately one electron per nanocrystal and then level off at this value, whereas the model predicts continued decrease of $T_1$ with further addition of electrons. Phenomenologically, the electron spin density experienced by Mn$^{2+}$ no longer increases after this point. The approximation of a constant $T_{1\text{e}}$ cannot be the source of this disagreement between model and experiment because $T_{1\text{e}}$ likely decreases with increasing $\langle n \rangle$, but the model already overestimates the decrease in $T_{1\text{Mn}}$ at $\langle n \rangle > 1$. Instead, this difference between model and experiment suggests that electron–electron spin-
achieved, possibly due to competitive hole trapping by Mn$^{2+}$ during photodoping. A similar trend of decreasing $T_1$ with increasing electron density is observed for all samples, but for the $d = 7.8$ nm nanocrystals, $T_1$ is still decreasing after the addition of $\sim 4$ conduction band electrons. This result confirms that the trends in $T_1$ in these nanocrystals are determined by electron density rather than electron count. Overall, the observation that $T_1$ becomes insensitive to electron density beyond $\sim 5 \times 10^{19}$ cm$^{-3}$ thus suggests that, at these high electron densities, the carrier spin density experienced by Mn$^{2+}$ becomes independent of the total electron density.

The impressive magneto-optical effects observed in DMSs, such as giant Zeeman splittings, result from strong exchange interactions between charge carriers and magnetic dopants. The results presented here illustrate that DMS spin dynamics can also be controlled using such exchange interactions, via spin and energy transfer between the magnetic dopants, charge carriers, and lattice excitations (e.g., phonons). Colloidal Zn$_{1-x}$Mn$_x$O nanocrystals are attractive model systems for probing these spin dynamics in DMS nanostructures. The pulsed EPR data presented here demonstrate large changes in Mn$^{2+}$ spin dynamics upon introduction of small numbers of excess conduction band electrons into colloidal Zn$_{1-x}$Mn$_x$O nanocrystals, arising from the introduction of new Mn$^{2+}$-carrier exchange coupling pathways. The experimental observations are understood in terms of Mn$^{2+}$ spin transfer to the conduction band electrons, and a simple model is described that reproduces the main experimental observations. These results illustrate the capability to use nanocrystal charge-state control for tuning dopant spin dynamics relevant to future spintronic applications of this class of materials.

## METHODS

**Nanocrystal Synthesis.** Colloidal $d = 3.7$ nm Zn$_{1-x}$Mn$_x$O nanocrystals were synthesized by base hydrolysis as described previously. First, 13 mmol of zinc acetate dihydrate was dissolved in 135 mL of dimethyl sulfoxide at room temperature. Once the zinc precursor was fully dissolved, 1–15 $\mu$mol of manganese acetate dihydrate was added. This solution was stirred while a solution of 22 mmol of tetramethylammonium hydroxide pentahydrate in 40 mL of ethanol was added dropwise. Nanocrystals were grown for 30 min, after which the reaction was stopped by precipitation with $\sim 300$ mL of ethyl acetate. Nanocrystals were collected via centrifugation followed by resuspension in ethanol and precipitation with heptane. In order to make the nanocrystals soluble in nonpolar solvents, a ligand exchange was done by suspending nanocrystals in ethanol and precipitating them with an excess of dodecylamine (DDA) that had been heated above $29^\circ$C. Finally, the nanocrystals were washed, resuspended with EtOH/toluene as described above. Large Mn$^{2+}$-doped ZnO nanocrystals were synthesized following the above procedure but were grown for 24 h before precipitation with ethyl acetate. Additionally, before treatment with DDA, nanocrystals were heated under N$_2$ in DDA at $180^\circ$C for 20 min followed by precipitation with ethanol and collection by centrifugation.

**Physical Characterization.** The Mn$^{2+}$ mole fraction ($x$) was determined by inductively coupled plasma atomic emission spectroscopy. CW EPR spectra (295 K) were performed using a Bruker EMX X-band spectrometer with a Bruker SHQE resonator operating at a microwave frequency of 9.8 GHz.

### Photochemical Reduction

UV illumination under anaerobic conditions generates holes that may be quenched by ethanol or other hole acceptors, leaving behind kinetically stable conduction band electrons ($e^{-}_{CB}$). Continued illumination allows accumulation of multiple $e^{-}_{CB}$ per nanocrystal, which can be monitored by the appearance and growth of an absorption band in the IR and a bleach of the band-edge absorption. Nanocrystals are referred to as fully reduced when continued photodoping no longer alters the intensity or position of the IR absorption peak. Anaerobic Zn$_{1-x}$Mn$_x$O nanocrystal solutions were prepared in EPR tubes in an inert-atmosphere glovebox. The tubes were then sealed under vacuum to maintain the inert environment. These samples were photochemically reduced via irradiation with a 100 W Hg/Xe Oriel photolysis lamp (~2 W/cm$^2$, ~1.5 cm illumination diameter) using aqueous CuSO$_4$ to filter out IR photons. Electron densities were determined via titration against [FeCp$^+$][BArF$^-$][FeCp$^+$] = decamethylferrocenium, [BArF$^-$] = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate.

**Pulsed EPR Spectroscopy.** Pulsed EPR experiments (4.5 K) were performed on a Bruker E580 X-band spectrometer with an ER 4118 X-MDS resonator operating at a microwave frequency of 9.7 GHz. The sample and probe were mounted inside of an Oxford Instruments CF9350 dynamic continuous flow cryostat. The temperature was controlled and monitored with a Cernox Resistor CX-1050-AAA.14L temperature sensor (LakeShore). ESE spectra were obtained by measuring the standing Hahn echo intensity ($\pi/2 - T_{\text{fixed}} - \pi - T_{\text{fixed}} - \text{echo}$) as a function of transverse field. The delay time ($T_{\text{fixed}}$) was 124 ns between the tipping ($\pi/2$) and refocusing ($\pi$) pulses. $T_1$ was measured using an echo-detected inversion recovery pulse sequence ($\pi - \tau - \pi/2 - T_{\text{fixed}} - \pi - T_{\text{fixed}} - \text{echo}$). $T_2$ was measured using a standard two-pulse Hahn echo sequence ($\pi/2 - \tau - \pi - \tau - \text{echo}$). The length of the $\pi/2$ ($\pi$) pulse for all experiments was 16 ns (32 ns).

### ASSOCIATED CONTENT

#### Supporting Information

CW EPR spectra of Zn$_{0.9997}$Mn$_{0.0003}$O nanocrystals and inversion recovery data for reduced ZnO nanocrystals. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.5b00621.

### AUTHOR INFORMATION

**Corresponding Author**

E-mail: Gamelin@chem.washington.edu.

**Present Addresses**

J.D.R.: Department of Chemistry and Biochemistry, University of California in San Diego, La Jolla, CA 92093, U.S.A.

S.T.O.: Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.

**Notes**

The authors declare no competing financial interest.

**ACKNOWLEDGMENTS**

Support from the U.S. National Science Foundation (DMR-1206221 to D.R.G. and Graduate Research Fellowship DGE-1256082 to A.M.S.) is gratefully acknowledged. Additional funding was provided by a Department of Energy, Energy Efficiency and Renewable Energy (DOE-EERE) Fellowship to J.D.R.